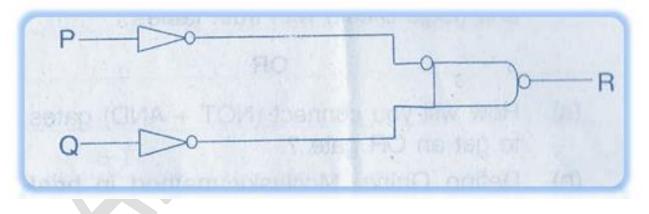
Circuit Analysis and Electronic Device

<u>Unit 1</u>


1.	Write Binary number's corresponding to following decimal number : (a) 786 (b) 121	[2013]
2.	Convert decimal number 110 to its binary equivalent.	[2013]
3.	Convert A9B5.49 hexadecimal number to its equivalent decimal number.	[2013]
4.	Write hexadecimal equivalent for 5076 decimal.	[2013]
5.	What is the value of one byte in bit form?	[2013]
6.	Add 1101 and 0011.	[2013]
7.	Multiply 1100 with 0101.	[2013]
8.	Convert 0.95 to its binary equivalent.	[2013]
9.	Convert the following binary number into its octal equivalent: $(1001011.10101)_2 = (?)_{10}$	[2014]
10.	Add 1011 and 110	[2014]
11.	Divide the binary number 1110101 by 1001	[2014]
12.	Perform the following conversion and find X :	[2014]
	(4057.06) ₈ = (X) ₁₀	
13.	Convert (564)10 into its hexadecimal equivalent.	[2014]
14.	Convert (DBCA) ₁₆ into its decimal equivalent.	[2014]
15.	Perform the following conversion and find X :	[2015]
	(23043) ₈ =(X) ₁₆	
16.	Add 11001 and 1010	[2015]
17.	Subtract 101 and 100101	[2015]
18.	Convert (11001)2 into (X)8 , find X.	[2015]
19.	Convert (59.4375) ₁₀ into binary.	[2016]
20.	Subtract (01111) ₂ from (11011) ₂	[2016]
21.	Divide 100011 by 111.	[2016]
22.	Perform the following number system conversions:	[2017]
	a. (110110111) ₂ = (?) ₁₀ Convert to decimal	
	b. $(5674)_{10} = (?)_2$ Covert to binary	
23.	What is Binary coded decimal code?	[2017]
24.	Describe ASCII and elaborate its importance.	[2017]
25.	Convert the following from octal to decimal:	[2017]
	a. $(33.56)_8 = (?)_{10}$	
	b. (331) ₈ =(?) ₁₀	
26.	Discuss in detail the concept of number systems viz, binary, decimal, octal and hexadecimal. I	Describe the
	process steps of interconversion from one number system to other.	[2017]
27.	Define coding of information and its need/use. Describe briefly the binary coded decimal cod	es. Prove
	that Grey code is both reflective and unit distance code?	
		[2017]
28.	Describe various codes.	[2015][2016]
29.	What are the advantages of using different number systems?	[2017]

<u>Unit 2</u>

1. 2. 3.	Describe the operating characteristics of BJT. Explain the switching action of Bipolar Junction transistor. Write short notes on the following :	[2013] [2013] [2014]
	a. RTL b. TTL	
4.	Draw TTL circuit diagram of OR gate.	[2015]
5.	What is the difference between Analog signal and Digital signal?	[2015]
6.	Explain operation of AND gate with TTL logic circuit.	[2015]
7.	Give switching characteristics of semiconductor diode.	[2016][2017]
8.	Describe operation of OR gate with TTL circuit.	[2016]
9.	Draw symbol of NPN transistor.	[2015]
10.	Write two characteristics of digital IC.	[2015]
11.	Explain switching characteristics of transistor.	[2015]
12.	What is active high signal?	[2015]
13.	Give logic families and their characteristics.	[2016]
14.	Characteristics of Digital IC's	[2017][2013]

<u>Unit 3</u>

Write truth table for XNOR gate.	[2013][2017]
Write the truth table for the following logic circuit:	[2013]

3.	Give truth table of Universal gate.	[2013]
4.	Write basic rules for NAND gate.	[2013]
5.	Draw logic circuit which represents the Boolean equation :	[2013]
6.	$Y = (\overline{AB} + A\overline{B}).\overline{C}$ Define Half Adder.	[2013][2016][2017]
7.	Describe Full Adder with its logic diagram and truth table.	[2013][2016][2017]
8.	How will you connect (NOT + AND) gates to get an OR gate.	[2013]
9.	Describe DEMUX and also draw its circuit diagram.	[2013][2016]
10.	Minimize the following Boolean expression using K-Map :	[2014]

Aryan College/B.Sc.-IT 3/Circuit Analysis and Electronic Device/2017

1. 2.

$$F(A, B, C, D) = \sum_{m} (0,4,6,7,8,9,10,13)$$

12. 13. 14. 15.	Define multiplexer. Write the truth table of XOR gate What is SOP form? Simplify y=AB+AB' What do you mean by Universal gate? Minimize the following Boolean expression using K-Map : $F(A, B, C, D) = \sum_{m} (0,4,6,7,8,9,10,13)$	[2014][2016][2017] [2014] [2014] [2014] [2014] [2014]
	Explain full adder with its truth table. Design a half adder using NAND gates only. What is Boolean algebra? Explain it's all laws and solve the problem :	[2014] [2014]
	$AB + \overline{C}(AB + A\overline{C})'$	
	Write truth table of NAND gate. Simplify :	[2015] [2015]
	$(A\overline{B} + \overline{A}B)'$	
	Prove that A(A+B)=A Prove that : $ABC + A\overline{B}C + AB\overline{C} = A(B + C)$	[2015] [2015]
 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 	Explain Adders Explain working of MUX. What are various code converters? Describe various reduction techniques with examples. Describe half subtractor. Write truth table of NAND gate. Show that A(A-B)=A Get OR gate function (operation) by NAND gate. What is Decoder? What is 2 bit by 2 bit multiplier? Describe Quine-McCluskey method for reducing Boolean function to a minimal form. Obtain AND,OR,NOT gate functions(operation) from NOR gate. Simplify the following expression:	[2015] [2015][2016] [2015] [2015] [2016] [2016] [2016] [2013][2014][2016] [2016] [2016] [2016]

$$ABC + A\overline{B}(\overline{AC})$$

36. What is Boolean algebra? Give example of devices with 2 states.	[2017]
37. Write the truth table of NOR gate.	[2017]

Aryan College/B.Sc.-IT 3/Circuit Analysis and Electronic Device/2017

38.	What is DeMorgan's law?	[2017]
39.	What is a truth table? Draw and describe And, OR and NOT gates.	[2017]
40.	What is Karnaugh Map (K-Map)	[2017]
41.	. What do you understand by logic functions? Illustrate by describing any one logic function as an algebrai	
	function, truth table and logic circuit.	[2017]
42.	Describe Quine McCluskey method of minimization and its key principles	[2017]

<u>Unit 4</u>

1.	Describe SR flip flop with its block symbol and truth table and also explain T flip	flop. [2013]
1.	besche skille ind with its block symbol and truth table and also explain thip	
2.	Explain T flip flop with truth table.	[2014][2015]
3.	What is race around condition?	[2014]
4.	Explain Master slave JK flip flop with circuit diagram in detail	[2014][2016]
5.	What is sequential circuit?	[2014]
6.	What is race around condition?	[2014]
7.	Explain synchronous and asynchronous counters with circuit diagrams	[2014]
8.	Give block diagram of JK flip flop and explain its working.	[2015][2017]
9.	What are registers?	[2013][2015][2016][2017]
10.	Give block diagram of RS flip flop.	[2016]
11.	Discuss the concept and usage of sequential circuits.	[2017]